Chapter 1

OBJ: main.py
What worked?

A standard for loop that quickly calculates the factorial of a whole number. Python doesn't have
number size limitations so even large numbers like 199999 can be calculated within seconds.
What didn't work?

I can't put letters or non-whole numbers into the input else it exits with an exception. Negative
values are simply ignored.

CODE (Python)
X = int(input(“What number do you want to factorialize? "))
if x <O:

print(“Input must be positive”)

exit()

f=x

foriinrange(1, x):
f*=

print()

SCREENCAP

i B

fish /home/naelstrof/projects/factorial

What number you want
120

orialize? 16

What numkb:e ctorialize? 2

What numbe t to factorialize?
Input must '
What number do to factorialize? g met a terrible fate, haven't you

2

Trac

¢ = int{ input{ " m do you want
ValueError: invalid literal fc ' () with b

Chapter 2

Project: Bacteria Growth

Was an interesting project because it was harder than it appeared. I started out with just finding the
nearest power of two and using that for the time, but I realized the bacteria don't just suddenly double
at the 23 minute mark. So I had to look up growth rates and Pert or F = Pe”A(rt). Using known values F,
P, and t I could solve for r. Knowing R I could solve for t. Using the death value 7.3 million as F, I
could easily find the amount of time it would take for bacteria to reach that number.

After a bunch of confusing modifications I think I got a valid answer to a program that can calculate
bacteria growths, even if they don't simply double.

Code: (python)

Variables ---------------

killCap = 7.3 # in millions of bacteria
cureTime = 2.5 # in hours
doubleTime = 23 # in minutes
startingBacteria = 2
bacteriaAfterOneHour = 4

killCap = int(killCap * 1000000)

growthRate = math.log(bacteriaAfterOneHour / startingBacteria, 10) / doubleTime
cureTime = cureTime * 60

killTime = math.log(killCap / startingBacteria, 10) / growthRate

print(killTime)

lastMinuteDiagnoseTime = killTime - cureTime

print("Cure must be administered within", lastMinuteDiagnoseTime/60, "hours after first exposure,
otherwise death will ensue.")

Screenshot (next page):

fish /home/naelstrof/projects/bacteria

administ within 5.856461596104784 hours after first ex
th will e

Chapter 3

Bayes Theorem

What worked?

I used object oriented programming to create a tree node structure, with functions that can calculate
probabilities from leaves of the tree. It supports as many events as needed and can calulate conditional
probabilities using bayes theorem. It identifies events by string name. Everything works really
elegantly besides actually setting up the data structure. I couldn't think of a better way to set it up at the
time and now I'm too lazy to change it.

Code
calculates the probability of an event happening.
def calcProb(event):
e = event
n = e.probability
while e.parent != None and e.parent.name != None:
e = e.parent
n = n * e.probability
return n
an event node tree that supports many events with independant probability values.
class event:
name = None
events = None
probability = None
parent = None
def __init__(self, na, p):
self.name = na
self.probability = p
self.events =[]
def addEvent(self, na, p):
e =event(na, p)
e.setParent(self)
self.events.append(e)
def getEvent(self, na):
foriin self.events:
if i.name == na:
return i
def findEvents(self, na):
L={]
foriin self.events:
if i.name == na:
L.append(i)
break
if len(i.events) > O:
L = L +i.findEvents(na)
return L
def setParent(self, p):
self.parent = p
calculates the probability of an event happening with a condition that must happen, using bayes therom.
def calcConProb(self, eventname, condition):
find the first event that we are calculating the probability of.

e = self.findEvents(eventname)[0]
then retrieve the conditional part of the event
the numenator part of bayes therom
n = calcProb(e.findEvents(condition)[0])
now the denominator part of bayes therom
L = self.findEvents(condition)
d=0
foriin L:
d =d + calcProb(i)
then finally return the probability
return n/d

there's probably a much better way to set up this data structure, but | can't imagine assignments being
much more complicated than this, and I'm too lazy to change it.
e = event(None, None)
e.addEvent("Econ Grows", 0.7)
e.addEvent("Econ Slows", 0.3)
“"Econ Grows").addEvent("Stock Up", 0.8)
"Econ Grows").addEvent(“Stock Down", 0.2)
e.getEvent("Econ Slows").addEvent("Stock Up", 0.3)
e.getEvent("Econ Slows").addEvent("Stock Down", 0.7)
print("Given that the stock went up, the probability that the economy grew is", e.calcConProb("Econ Grows",
"Stock Up"))

e = event(None, None)
e.addEvent("France", 2/9)
e.addEvent("UK", 3/9)

print("Given that the student is a boy, the probability of that boy being french is", e.calcConProb("France”,
"Boy"))

e = event(None, None)

e.addEvent("Have disease"”, 1/100)

e.addEvent("No disease”, 99/100)
"Have disease").addEvent("Test positive”, 90/100)
"Have disease").addEvent("Test negative”, 10/100)
“No disease").addEvent("Test positive”, 15/100)
“No disease").addEvent("Test negative”, 85/100)

print("Given that the patient tested positive, the probability of the patient actually being diseased is",
e.calcConProb("Have disease”, "Test positive"))

Screenshot:

Terminal - fish /home/naelstrof/projects/bayes

t up, the probability that the

is a boy, the probability of that b

Chapter 4

Caesar Cipher
OBJ: main.py
What worked?

| used the built-in function “eval” to allow user input of functions. Its easy and fast, but
there was no way of easily getting the inverse of the given algorithm. So basically my
application assumes you know what you're doing and just blindly applies the algorithm to all
the characters given to it. To decrypt something you just have to get the inverse of whatever
algorithm you used and input it.

Code:

Screenshot:

fish /home/naelstrof/projects/encrypt

el

- algorithm

fagUE

Chapter 5

Project: Trip Through Germany

| found this project incredibly unenjoyable due to various reasons. First of all
some of the city names were misspelled which caused lots of problems when | was
trying to get their coordinates or when | was creating their neighboring traversable
cities. | probably spent over 6 hours just getting the database set up enough so | can
actually create an algorithm based on it. | had to work far to much manually adding
information into the database.

After all this strife and toil when | finally actually got to the programming part |
didn't even have time to get it working the way | wanted. Giving me less than optimal
results, but results non-the-less.

Really wish the project involved less database creation and more programming.

Code: python, main.py

sqlite3 as sql
sys

json

string

math

cities =

City:
——init__(self, id, name, neighbors, latitude, longitude, extrafees, extratime,
extratravel):
self.id = id
self.name = name
self.latitude = latitude
neighbors = None:
self.neighbors = json.loads(neighbors

self.neighbors = None
self.costs = None
self.distances = None
self.times = None
self.money = None
self.longitude = longitude
self.extrafees = extrafees

self.extratime = extratime
self.extratravel = extratravel

Uses haversine formula to approximate distance
from latitude and longitudes
def distance(lonA, latA, lonB, latB):
r= 6371 # radius of the earth in km
a = math.radians(latA
b = math.radians(latB
da = math.radians(latB-latA
db = math.radians(lonB-lonA
e = math.sin(da/2 math.sin(da/2) + math.cos(a math.cos(b
math.sin(db/2 math.sin(db/2
f =2 * math.atan2(math.sqrt(e), math.sqrt(1-a
return r * f # returns in km

def getDistance(cityA, cityB):
return distance(cityA.longitude, cityA.latitude, cityB.longitude, cityB.latitude) +
cityB.extratravel

def getCost(cityA, cityB):

dis = distance(cityA.longitude, cityA.latitude, cityB.longitude, cityB.latitude) +
cityB.extratravel

assume a taxi is the only available form of travel

and that it costs 2 Euros per km

money = dis * 2 + cityB.extrafees

time in hours, assume taxi’s move at a solid 130km/h

time = dis / 130 + cityB.extratime

return dis + money + time

def getMoney(cityA, cityB):

dis = distance(cityA.longitude, cityA.latitude, cityB.longitude, cityB.latitude) +
cityB.extratravel

assume a taxi is the only available form of travel

and that it costs 2 Euros per km

money = dis * 2 + cityB.extrafees

time in hours, assume taxi's move at a solid 130km/h

time = dis / 130 + cityB.extratime

return money

def getTime(cityA, cityB):

dis = distance(cityA.longitude, cityA.latitude, cityB.longitude, cityB.latitude) +
cityB.extratravel

assume a taxi is the only available form of travel

and that it costs 2 Euros per km

money = dis * 2 + cityB.extrafees

time in hours, assume taxi's move at a solid 130km/h

time = dis / 130 + cityB.extratime

return time

def traverse(city, cities, visited, money, time, dist):
Get a neighbor that has a low cost and hasn't been visited
lowest = None
lowestcity = None
foriinrange(O, len(city.neighbors
i lowest is None or (city.costs|i| < lowest and not city.neighbors|i| in visited):
lowest = city.costs|i
lowestcity = city.neighbors|i
If we couldn't find a city to continue traversing, we just use
the lowest cost traversal we can find within the remaining set
if lowestcity in visited:
lowest = None
lowestcity = None
foriinrange(O, len(cities
if lowest is None or (city = cities|i| and getCost/ city, cities|i|) <= lowest and
not cities|i| in visited) or lowestcity in visited:
lowest = getCost/(city, cities|i
lowestcity = cities|i
if lowestcity in visited:
return imoney, time, dist
money += getMoney(city, lowestcity
time += getTime(city, lowestcity
dist += getDistance(city, lowestcity
visited.append| city
print(city.name, "-> ", end=
if len(cities) == len(visited):

return [money, time, dist]
return traverse(lowestcity, cities, visited, money, time, dist)

Meant to replace names with references to the actual cities
this makes it easier to manipulate them
def solveNeighbors(cities):
for iin cities:
for oinrange(O, len(i.neighbors)):
foundMatch = False
for p in cities:
if p.name == i.neighbors|o]:
i.neighbors[o] = p
foundMatch = True
if not foundMatch:
print(“Error: City not found: “, i.neighbors|o])
sys.exit(1)

Assumes solveNeighbors was ran
def generateCosts/| cities):
Cost is distance + time + money
foriin cities:

i.costs =[]
i.times =[]
i.money = ||

i.distances = |[|
for o in i.neighbors:
dis = distance(i.longitude, i.latitude, o.longitude, o.latitude) + o.extratravel
assume a taxi is the only available form of travel
and that it costs 2 Euros per km
money = dis * 2 + o.extrafees
time in hours, assume taxi's move at a solid 130km/h
time = dis / 130 + o.extratime
i.costs.append(dis + time + money)
i.distances.append(dis)
i.times.append(time)
i.money.append(money)

db = None
try:
db = sql.connect/(‘cities.db")
cur = db.cursor()
cur.execute('SELECT * FROM “cities™")
data = cur.fetchone()
while data is not None:
cities.append(City(data/O}, data[1], data[2], data[3], data|4], data|5], data[6],
data/7]))
data = cur.fetchone()
except sql.Error as e:
print("SQLException: “, e.args[O |)
sys.exit(1)
finally:
db.close()

This section was used to populate the table for neighbors
completely useless now that its populated
#for i in cities:
#print("Who is " + i.name +"|'s neighbors?:")
#neighborstring = input()
#neighbors = neighborstring.split(“ ")
#print("Using *, neighbors, “\n from ", i.neighbors)
#i.neighbors = neighbors
#db = sql.connect(cities.db")
#db.execute(UPDATE cities ™ SET neighbors=? WHERE id=?;,
[json.dumps(neighbors), str(i.id)])
#db.commit()

Generate distances for all the city connections
solveNeighbors(cities)
generateCosts/ cities)
print("A list of the cities, their neighbors, and their costs to visit the neighbors...")
for i in cities:

print(i.name)

for o inrange(O, len(i.neighbors)):

print("\t",i.neighbors|[o].name, i.costso])

startingcity = None

foriin cities:
if i.name == "Frankfurt™:

startingcity =i

break
print("Calculating greedy optimal path starting from Frankfurt...")
cost = traverse(startingcity, cities, [|, 0, 0, 0)
print(™)
print("Using this path you would use”, cost[0], “Euros, spend”, cost[1], "hours
(traveling, resting), and travel”, cost[2], "km.")

Screenshot:

fish /home/naelstrof/projects/germany

Nuremberg 516.0373946344242
Basel 5836.414024563227
Muremberg
Dresden 1142.0515984E841326
Munich 513.3316508347838
Stuttgart 750.3637567507396
Leipzig 839.9625717968265
Kassel S02.762890(09308453
Frankfurt 924 .5658631913526
Mannheim 973.2801851465123
Karlsruhe 1011.482456956546
Dresdean
Leipzig 529.7404355415844
Nuremberg 1176.2547604285746
Berlin 569.1023645240416

Dresden 521.7191024654821
Muremberg B52.0283419197845
Kassel 108B.7552424504309
Hanover 1797.2800854670877
Berlin 576.634408394186

Leipzig 583.16216599538334
Dresden 566.8301727357423
Hanover 2120.973570078954
Rostock 753.8596708423802
Hamburg 1364.440067256444
Lubeck 1147.1069520645813

Basel

Munich 1437 .54267774654

Baden-Baden 507 .6344849688602
Calculating greedy optimal path starting from Frankfurt...
Frankfurt -» Wiesbaden -» Mannheim -> Karlsruhe -> Baden-Baden -= Stuttgart

-» Nuremberg -= Munich -» lLeipzig -= Dresden -= Berlin -» Rostock -= |ubec

k -= Hamburg -= Bremen -= Bremen -= Kassel -= Sankt Augustin -= Bonn -= Col
ogne -= Dusseldorf -= Hanover -=
Using this path you would use 7802.140826641246 Euros, spend 48.46977241015
863 hours (traveling, resting), and travel 3181 .070413320623 km.

Chapter 6

Modular Exponentiation
OBJ: main.py
What worked?

Reading and interpreting the pseudo-code from the book it was easy to implement functions for
Algorithm 1 and 5 in python. I easily created a base converter function and used it within my modular
exponentiation function using the concepts I learned from the book. Using the Modular Exponentiation

I could easily solve problems 25-28 on page 255.

CODE(Python3.3)

import math

def base(n, b):
5=
while n 1= 0O:
a=str(n%b)+a
n = math.floor(n/b)
return a

def modExpo(b, n, m):

x=1
power = b % m
foriin reversed(base(n, 2)):

ifi =="1"

X = (x * power) % m

power = (power * power) % m
#x = b " n¥m
return x

"4.2.25: (7 644)%645 =", modExpo(7, 644, 645))
"4.2.26: (11" 644)%645 =", modExpo(11, 644, 645))
"4.2.27: (37 2003)%99 =", modExpo(3, 2003, 99))
"4.2.28: (123°1001)%101 =", modExpo(123, 1001, 101))

SCREENSHOT

Terminal - fish /home/naelstrof/projects/modularexponentiation

Chapter 7

Project: n-queens

Since my student ID is odd, | had to find all solutions to a specified board size to the n-
queen problem. It proved quite difficult due to error in translation from my brain logic to code.
What | mean by that is that even without looking up what backtracking was, | already had the
idea of backtracking in my head. | just didn't know how to translate it into clean functioning
code at first. The first iteration of my program simply solving ONE solution of the puzzle was a
nasty nested while loop with confusing backtracking. It did work but it was really messy and
didn't find ALL solutions. From here | looked up how other people coded it, | noticed they did it
recursively instead and it made waaay more sense to me how to make it cleaner.

From there | had a function that could simply solve the puzzle once, but after much
thought, trial, and error (hours of it) | realized the same function couldn't generate all the
solutions at once. So | split up the tasks into solve(), and permutate(). The solve() function
simply takes any partial or uncompleted puzzles and attempts to complete them. While the
permutate() function takes completed puzzles and recursively permutates them by row, and
then uses solve() to attempt to solve the new permutation. Since the permutations all happen
linearly-- there's no chance for repeating solutions to end up in the final list of solutions. Thus
with a simple permutate(solve()) my program generates all solutions.

However the implementation of the program is kinda bad it definitely isn't just a simple
permutate(solve()). In other words the functions are not modular and are completely state
dependant, and they require somewhat of a kick-start macroing to work properly. Which is a
pretty big deal to me, but I'm running low on time and | really don't want to restructure/re-
comment everything again.

Code:
solutions =
queen:
x=0
y=0
_init__ (self, x,y):
self.x =x
selfy=y
hasCollision(self, q):
can't collide with itself
q==self:
False
dx = abs(self.x - q.x
dy = abs(self.y - q.y
dx == dy: # diagnals is the same
True
dx == 0: # row is the same
True
dy == 0: # column is the same
True
False

findCollisions(queens, q):

hc = False
for nq in queens:
if g.hasCollision(nq):
hc = True
break
return hc

takes an existing board of queens and attempts to recursively add more queens under the condition
that they cannot be attacked
#if it fails to add a queen it returns an empty table, otherwise it will return the completed puzzle
def solve(row, size, queens):
just setting up some variables to use
global solutions
if we have a completed solution
if row = size:
add it to the list of solutions
solutions.append(queens)
return queens
for column in range(0, size):
we create a plain old queen in the specified area only to test it against the queens on the board
already.
q = queen(column, row)
if findCollisions(queens, q) == False:
if our position is safe, add the queen to the board!
queens.append(q)
#if we couldn't find a position for the next row, backtrack to a previous queen.
if solve(row+1, size, queens) == ||
queens.pop()
else:
since the above solve(row+1, size, queens) alters the queens table, its actually already a
completed puzzle now!
return it since its complete.
return queens
return ||

start the first iteration of the recursive permutation for us.
this is basically a macro to get the permutations running recursively correctly.
def permutateAll(queens):
permutate(0, len(queens), queens)
foriinrange(1, len(queens)):
permutate(i, len(queens), queens)

recursively permutates a completed queen set starting by moving the queen at the specified row over
by one safe-spot,
then using solve() to complete the new unique puzzle fragment
then recurses onto all the new unique generated rows
def permutate(row, size, queens):
if we're asking to permutate a row that doesn't exist, exit.
if row ~= size:

return

copy the queen table to the specified row,

permutatedQueens = | |

for 1in range(0, row):
permutatedQueens.append(queens| 1 |)

g = queens| TOw |

instead of copying everything directly, we mutate the specififed row by attempting to move it along
the board

permutated = False
for column in range(q.x+1, size):

q = queen(column, q.y)

if findCollisions(permutatedQueens, q) == False:

permutatedQueens.append(q)
permutated = True

if we couldn't move it any further along, due to collisions/running out of board space, we exit.
if not permutated:

return
now with our new permutated partial board, we attempt to solve the rest of the puzzle
test = solve(row+1, size, permutatedQueens)
if we couldn't solve it, we continue to permutate the current row
if test==]:

permutate(row, size, permutatedQueens)

return
if we succeeded, we not only do we continue to permutate the current row
permutate(row, size, permutatedQueens)
but we also recursively permutate all the new rows that were generated
for 1in range(row+1, size):

permutate(1, size, test)
return

some silly code to generate a grid of blocks and Qs to represent the board and where the queens are.
might not be an accurate chess board
def printTable(queens):

size = len(queens)

toggle = True
table = ||
for x in range(0, size):
row = | |
for y in range(0, size):
if toggle:
row.append("l")
else:

row.append(" ")
toggle = not toggle
table.append(row)
if size 70 2 ==0:
toggle = not toggle

for 1in queens:
table|i.y|[i.x|="Q"
for x in table:
for y in x:
print(y, end="")
print("")

size of the board
size = 8

generates a starting solution of the n-queens problem.
startingboard = solve(0, size, ||)

recursively permutates the solution to find all other solutions.
permutateAll(startingboard)

print all the found solutions and number them
count = 0
for 1in solutions:
print("Unique Solution #", count, "-------- ")
printTable(1)
count += |

print some information

print("Found", len(solutions), "unique solutions for a " + str(size) + "x" + str(size) + " board.")
print("This application can find all the solutions to different sized boards, just change the size = #
variable inside the code")

Screenshot:

fish /home/naelstrof/projects/queens

Found 92 unique solutions for a 8x8 board.
This application can find all the solutions to different sized boards, just
change the size = # variable inside the code

Chapter 9

Recursive vs Iterative
OBJ: main.py
What worked?

I used python's built-in timing systems called “timeit”, which let me easily and accurately time
the different algorithms. What was interesting is that recursive vs iterative functions is situational.
Iterative fibonacci functions are faster than recursive ones, while recursive mod expo functions are far
faster than my particular iterative mod expo. It could be due to the array allocations however.

CODE(Python)

ittt tg gt wlhudli t
tttthRt tg g t{ vt hudli t
tttthP hwlhudli tLobai eyyidft tt(tt=tlobai eyydfti t twin

tttral dHiFtlei mhft(" trw
ittt _tg tt=tN

phribe) hfti #btrv

tittetg t, ,

] s#ht tlgt v

ttttttttetg t) U fti tEtbtnt=te
tttttti tgt ewsflaalft tkibtn
it hudli te

phrt ap>!caftbi % tv

ttt! tg t(

ttttca[hltgtbtEt

tittral tiit L hOhL) hpftbe) hfti twintry
ittty gt (v

teetttettttt! tg tft! t+tca[hlotEt
tittttttca[hltgtftca[hltttca[hlttEt
tttCtl tgth/ i E

tttt hudli !

phrit ap>!caftbi % trw
tittbt gt talt t twalti t' t v

titttttt! tgtl ap>! caftbt ewsfLaalft kwint ™
tettttt hudli tFt! e+t it

tttthP) hv

titttttt tgtl ap>! caftbt ewfLaalft kwirt
ttttttt hudli thtft! t+t Bt tHbtEt ttEt

cldtuft, | hydl) #htobai eyylfartw(tul hy *hi pg,t tn
Ltg tui hitfidF hiftz obai eyydftw(tet) hudcg,rla ' e#f" "t caludobai eyy#ti d bhlg(. . n
clruftl®, Fpla)hyai p),

clfFuft, Ghleudii tobai eyydfartw(tuf hy *thi pg, t, tn
g tulF hitfidF higftzbbai eyyifow() hudcg, rla t'" eff" " 6 caludbbai eyydfti d bhlg(. .t
cliFufel, #la) hyai p),

et tv

ttttc L#F Ut Ghlew8htOhl) i i #)],
hP hv

ttttc LiFUFt, | hydl) #BhtOhl) #i f #)],tn

cLiEFt, | hydl) $Bhtartf77777/ 77777 (. (v thi pg.t
ltgtuk hitfisk hitfd ap>!caft77777%77777%(. (t) hudcg,rla t'" e#""th calul ap>!ca,®tid bhlg(..tmn
clitufti®, Fpla) hyai p),tn

cldtuft, Ghleulti tartf77777/ 77777rE(. (v *hi pg,t
g tul hitfidt hiiftz ap>! caft77777%77777%(. (t2) hudcg,rla t'" e##" "t calu ap>!ca,*id bhlg(..m
cliFufel, #la) hyai p),

et v

ttttc LfiF uft, Ghlew®htOnhl) i f #)], th
hP hv

tittc L UFt, | hydl) $8htOnl) i ff)],

S31>>U38D

Terminal - fish /home/naelstrof/projects/recuration

Chapter 10
Project: RSA encryption

What worked? My previous modular exponentiation algorithm worked perfectly to encrypt and
decrypt the sentence “The Queen Can't Roll When Sand is in the Jar” in a reasonable
timeframe.

| did have problems understanding the extended Euclidean algorithm due to wikipedia
expecting too much background knowledge, however | did understand what modular
multiplicative inverse is and was able to implement my own simple algorithm.

def base(n, b):
a="
while n 1= 0:
a=str(n%b)+a
n = math.floor(n/b)
return a

def modExpo(b, n, m):

X=1
power =b % m
foriin reversed(base(n,2)):

if i =="1":

X =(Xx*power) % m

power = (power * power) % m
x = b*%m
return x

Should be using the Extended Euclidean algorithm, but here's my own easier to understand one :).
def invmod(a, m):
foriinrange(1, m):
ifi*a % m==1:
return i
raise ValueError("a and m should be prime or something")

Not even sure what a "totient" is, but wikipedia said this is the function for it.
def totient(p, q):
return (p-1)*(g-1)

def RSAEncrypt(p, g, e, message):
n=p*q
t = totient(p, q)
ift% e==0:
raise Exception("e can't be a divisor of the totient of p and g, has to be co-prime")
d=invmod(e,t)
L=l
foriin range(0, len(message)):
L.append(modExpo(ord(message[i]), e, n))
d and n are the private key
public key is n and e
return L, d, n

def RSADecrypt(n, d, message):
L - nn
foriin range(0, len(message)):
L =L + chr(modExpo(message[i],d, n))
return L

d and n are the private key to decrypt
emessage, d, n = RSAEncrypt(71, 67, 17, "The Queen Can't Roll When Sand is in the Jar")

print("Encrypted message: ", emessage)
print("Decrypted message: ", RSADecrypt(n, d, emessage))

Screenshot:

Terminal - fish /home/naelstrof/projects/RSA

an't Roll When Sand is in the Jar

Sorting algorithms
OBJ: main.py
What worked?

I used python's built-in timing systems called “timeit”, which let me easily and accurately time
the different sorting algorithms. Quicksort, of course, outperformed pretty much any other algorithm.
For the “roll-your-own™ I tried to do a shell-like sort, but it was outperformed by a normal bubble sort
anyway :(. Understanding the quicksort algorithm wasn't very hard because of videos, but
implementing it was hard because I don't have any kind of proper debugging tools yet, so I ended up
having to understand a recursive function via printing to the console. I ended up getting it working
anyway.

CODE(Python)
import random
import timeit

def init():
ten thousand integers.
return [random.randint(O, 10000) for r in range(1000)]

def printList(List):
foriin List:
print(str(i) +", ", end="")

print("")

def bubbleSort(List):
Sorted = False
while Sorted == False:
Sorted = True
foriinrange(O, len(List) - 1):
#Detect if a swap is required
if List[i]>List[i+ 1]
#Swap
foo = List[i+ 1]
List[i+ 1] = List[i]
List[i] = foo
#Make sure we know if we had to switch something
Sorted = False

def split(List, pivotindex, rightIndex):
leftCursor = pivotindex + 1
rightCursor = rightIndex
finished = False
swapPoint = -1
while not finished:
#for i in range(pivotindex, rightindex + 1):
#print(i, ™", List[i], ", ", end="")
Hprint(")
foundLeftSwap = False
foundRightSwap = False

#Find a swap location with the left cursor
while not foundLeftSwap and leftCursor <= rightCursor:
if List[leftCursor] > List[pivotindex :
foundLeftSwap = True
break
if leftCursor > rightIndex:
break
leftCursor +=1

if not foundLeftSwap and leftCursor >= rightindex:
#Special case where we picked the highest number for the pivot point.
#print("Swapping Special”, pivotindex, "and”, rightIndex)
foo = List[rightIndex]
List[rightIndex] = List[pivotindex]
List[pivotindex] = foo
finished = True
swapPoint = rightindex
break
while not foundRightSwap and rightCursor > leftCursor:
if List[rightCursor] <= List[pivotindex]:
foundRightSwap = True
break
if rightCursor < pivotindex:
break
rightCursor -=

#If we found two valid swaps, swap and continue
if foundRightSwap and foundLeftSwap:
#print("Swapping Normal", leftCursor, "and”, rightCursor)
foo = List[rightCursor]
List[rightCursor] = List[leftCursor]
List[leftCursor] = foo
else:
#Otherwise we have run out of things to do, and must put the pivot in the middle
swapPoint = leftCursor - 1
#print("Sorted, now swapping”, pivotindex, "and", swapPoint)
foo = List[swapPoint]
List[swapPoint] = List[pivotindex]
List[pivotindex] = foo
finished = True
break
#Now we should have a split list, to completely sort it we must recursively split it.
if swapPoint - pivotindex > 1:
#print("left recursion at", swapPoint)
split(List, pivotIndex, swapPoint - 1)
if rightIndex - swapPoint > 1:
#print("right recursion at", swapPoint)
split(List, swapPoint + 1, rightIndex)
return O

def quickSort(List):
#Recursively split the list until it's sorted.
split(List, O, len(List) - 1)

def bogoSort(List):
Sorted = False
while not Sorted:
Sorted = True
foriinrange(O, len(List)-1):
if List[i]>List[i+ 1]:
Sorted = False
break
if not Sorted:
#:)
random.shuffle(List)

def rollSort(List):
Sorted = False
i=0
j=100
while not Sorted or j > 1:
Sorted = True
if i >= len(List) - j:
i -= len(List) - j
if j > 1:
j -=
while i < len(List) - j:
if List[i]> List[i+j]:
foo = List[i+j]
List[i+j] = List[i]
List[i] = foo
Sorted = False
i+=j

print("Bubble Sort Time:", end="")
print(timeit.timeit('bubbleSort(init()), setup="from __main__ import bubbleSort; from __main__ import init",
number=10), "seconds")

print("Quick Sort Time:", end="")
print(timeit.timeit('quickSort(init())', setup="from __main__ import quickSort; from __main__ import init",
number=10), “seconds")

print("Roll-My-Own Sort Time:", end="")
print(timeit.timeit('rollSort(init()), setup="from __main__ import rollSort; from __main__ import init",
number=10), "seconds")

SCREENCAP

Terminal — fish /home/naelstrof/projects/sorting

